

1

R programming Dr. Labeed Al-Saad

R - Packages

R packages are a collection of R functions, complied code and sample data.

They are stored under a directory called "library" in the R environment. By

default, R installs a set of packages during installation. More packages are

added later, when they are needed for some specific purpose. When we start

the R console, only the default packages are available by default. Other

packages which are already installed have to be loaded explicitly to be used

by the R program that is going to use them.

All the packages available in R language are listed at R Packages.

Below is a list of commands to be used to check, verify and use the R

packages.

Check Available R Packages

Example: Get library locations containing R packages

> .libPaths()
[1] "C:/Users/hp/AppData/Local/R/win-library/4.4"
[2] "C:/Program Files/R/R-4.4.0/library"

Example: Get the list of all the packages installed:

> library()

When we execute the above code, it produces the following result. It may

vary depending on the local settings of your pc. In our case, the results will

be:

Packages in library ‘C:/Users/hp/AppData/Local/R/win-library/4.4’:

abind Combine Multidimensional Arrays

AnnotationDbi Manipulation of SQLite-based annotations

 in Bioconductor

askpass Password Entry Utilities for R, Git, and

 SSH

base64enc Tools for base64 encoding

BH Boost C++ Header Files

Biobase Biobase: Base functions for Bioconductor

BiocGenerics S4 generic functions used in Bioconductor

BiocIO Standard Input and Output for

2

R programming Dr. Labeed Al-Saad

Get all packages currently loaded in the R environment

> search()
 [1] ".GlobalEnv" "tools:rstudio" "package:stats
"
 [4] "package:graphics" "package:grDevices" "package:utils
"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

When we execute the above code, it produces the above result. It may vary

depending on the local settings of your pc.

Install a New Package

There are two ways to add new R packages. One is installing directly from

the CRAN (Comprehensive R Archive Network) directory and another is

downloading the package to your local system and installing it manually.

Install directly from CRAN

The following command gets the packages directly from CRAN webpage

and installs the package in the R environment. You may be prompted to

choose a nearest mirror. Choose the one appropriate to your location.

 install.packages("Package Name")

> # Install the package named "XML".
> install.packages("XML")

WARNING: Rtools is required to build R packages but is not curren
tly installed. Please download and install the appropriate versio
n of Rtools before proceeding:

https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/hp/AppData/Local/R/win-library/
4.4’
(as ‘lib’ is unspecified)

 There is a binary version available but the source version
 is later:
 binary source needs_compilation
XML 3.99-0.16.1 3.99-0.17 TRUE

 Binaries will be installed
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.4/XML_
3.99-0.16.1.zip'
Content type 'application/zip' length 3103340 bytes (3.0 MB)

3

R programming Dr. Labeed Al-Saad

downloaded 3.0 MB

package ‘XML’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
 C:\Users\Public\Documents\iSkysoft\CreatorTemp\RtmpWeHl94\
downloaded_packages

Install package manually

Go to the link R Packages to download the package needed. Save the

package as a .zip file in a suitable location in the local system.

Now you can run the following command to install this package in the R

environment.

install.packages(file_name_with_path, repos = NULL, type = "source")

Example:

> # Install the package named "XML"
> install.packages("E:/XML_3.98-1.3.zip", repos = NULL, typ
e = "source")

Load Package or Library

Before a package can be used in the code, it must be loaded to the current

R environment. You also need to load a package that is already installed

previously but not available in the current environment. A package is loaded

using the following command:

> # Loading library called "xlsx"
> library("xlsx")

Viewing the contents of loaded library

In R, you can view the contents of a library (also known as a package) using

the ls() function or by exploring the package's documentation. Here's how you

can do it:

> ls("package:xlsx")

4

R programming Dr. Labeed Al-Saad

 [1] "addAutoFilter" "addDataFrame"
 [3] "addHyperlink" "addMergedRegion"
 [5] "addPicture" "Alignment"
 [7] "autoSizeColumn" "Border"
 [9] "BORDER_STYLES_" "CB.setBorder"
[11] "CB.setColData" "CB.setFill"
[13] "CB.setFont" "CB.setMatrixData"
[15] "CB.setRowData" "CELL_STYLES_"
[17] "CellBlock" "CellProtection"
[19] "CellStyle" "createCell"
[21] "createCellComment" "createFreezePane"
[23] "createRange" "createRow"
[25] "createSheet" "createSplitPane"
[27] "createWorkbook" "DataFormat"
[29] "Fill" "FILL_STYLES_"
[31] "Font" "forceFormulaRefresh"
[33] "forcePivotTableRefresh" "get_java_tmp_dir"
[35] "getCellComment" "getCells"
[37] "getCellStyle" "getCellValue"
[39] "getRanges" "getRows"
[41] "getSheets" "HALIGN_STYLES_"
[43] "INDEXED_COLORS_" "is.Alignment"
[45] "is.Border" "is.CellBlock"
[47] "is.CellProtection" "is.CellStyle"
[49] "is.DataFormat" "is.Fill"
[51] "is.Font" "loadWorkbook"
[53] "printSetup" "read.xlsx"
[55] "read.xlsx2" "readColumns"
[57] "readRange" "readRows"
[59] "removeCellComment" "removeMergedRegion"
[61] "removeRow" "removeSheet"
[63] "saveWorkbook" "set_java_tmp_dir"
[65] "setCellStyle" "setCellValue"
[67] "setColumnWidth" "setPrintArea"
[69] "setRowHeight" "setZoom"
[71] "VALIGN_STYLES_" "write.xlsx"
[73] "write.xlsx2"

You can also explore the documentation of a package to see its contents by

Using help() or ? to Explore Documentation in the help tab (down right

window of RStudio).

> # Explore the documentation of package in help tab
> help(package = "xlsx")
>
> # Using ? to get help (this is used to get help of everyt
hing)
> ? "xlsx"

5

R programming Dr. Labeed Al-Saad

Detaching a Package

you can detach a package from the search path, which effectively removes

its functions and datasets from your current R session. Use

the detach() function to remove a package from the search path:

> # Viewing current loaded packages
>
> search()
 [1] ".GlobalEnv" "package:xlsx" "tools:rstudio
"
 [4] "package:stats" "package:graphics" "package:grDev
ices"
 [7] "package:utils" "package:datasets" "package:metho
ds"
[10] "Autoloads" "package:base"
>
> # Detach “xlsx” package
> detach("package:xlsx", unload = TRUE)
>
> # Viewing loaded packages after detaching “xlsx” package
>
> search()
 [1] ".GlobalEnv" "tools:rstudio" "package:stats
"
 [4] "package:graphics" "package:grDevices" "package:utils
"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

 "package:dplyr": Specifies the package to detach.

 unload = TRUE: Ensures the package is unloaded from memory (optional but

recommended).

R Data Interferences

CSV files

In R, we can read data from files stored outside the R environment. We can

also write data into files which will be stored and accessed by the operating

system. R can read and write into various file formats like csv, excel, xml etc.

In this section we will learn to read data from a csv file and then write data

into a csv file. The file should be present in current working directory so

6

R programming Dr. Labeed Al-Saad

that R can read it, elsewhere you have to specify path . Of course we can

also set our own directory and read files from there.

Getting and Setting the Working Directory

You can check which directory the R workspace is pointing to using

the getwd() function. You can also set a new working directory

using setwd()function.

Example:

> # Get and print current working directory.
> print(getwd())

"C:/Users/hp/R"

> # Set current working directory.
> setwd("C:/Users/hp/OneDrive/Documents")
>
> # Get and print current working directory.
> print(getwd())
"C:/Users/hp/R"

This result depends on your OS and your current directory where you are

working.

Input as CSV File

The csv file is a text file in which the values in the columns are separated

by a comma. Let's consider the following data present in the file

named input.csv.

You can create this file using windows notepad by copying and pasting this

data. Save the file as input.csv using the save As All files(*.*) option in

notepad.

id,name,salary,start_date,dept

1,Rick,623.3,2012-01-01,IT

2,Dan,515.2,2013-09-23,Operations

3,Michelle,611,2014-11-15,IT

4,Ryan,729,2014-05-11,HR

5,Gary,843.25,2015-03-27,Finance

7

R programming Dr. Labeed Al-Saad

6,Nina,578,2013-05-21,IT

7,Simon,632.8,2013-07-30,Operations

8,Guru,722.5,2014-06-17,Finance

Reading a CSV File

Following is a simple example of read.csv() function to read a CSV file

available in your current working directory:

> data <- read.csv("input.csv")
> print(data)

 id name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 843.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations
8 8 Guru 722.50 2014-06-17 Finance

Analyzing the CSV File

By default the read.csv() function gives the output as a data frame. This

can be easily checked as follows. Also we can check the number of columns

and rows.

Example:

> data <- read.csv("input.csv")
>
> print(is.data.frame(data))
[1] TRUE
>
> print(ncol(data))
[1] 5
>
> print(nrow(data))
[1] 8

Once we read data in a data frame, we can apply all the functions applicable

to data frames as explained in subsequent section.

8

R programming Dr. Labeed Al-Saad

Get the maximum salary:

> # Create a data frame.
> data <- read.csv("input1.csv")
>
> # Get the max salary from data frame.
> sal <- max(data$salary)
> print(sal)

[1] 843.25

Writing into a CSV File

R can create csv file form existing data frame. The write.csv() function is

used to create the csv file. This file gets created in the working directory.

> # Create a data frame.
> data <- read.csv("input.csv")
> retval <- subset(data, start_date >= "2014-01-01")
>
> # Write filtered data into a new file.
> write.csv(retval,"output.csv")
> newdata <- read.csv("output.csv")
> print(newdata)

 X id name salary start_date dept
1 3 3 Michelle 611.00 2014-11-15 IT
2 4 4 Ryan 729.00 2014-05-11 HR
3 5 5 Gary 843.25 2015-03-27 Finance
4 8 8 Guru 722.50 2014-06-17 Finance

R Data Interferences

Excel files

Microsoft Excel is the most widely used spreadsheet program which stores

data in the .xls or .xlsx format. R can read directly from these files using some

excel specific packages. The popular R packages for reading and writing

Excel files are:

Reading Excel Files:

 readxl: This is a popular and user-friendly choice for reading data from

both .xls and .xlsx Excel files into R data frames. It's known for its

9

R programming Dr. Labeed Al-Saad

simplicity and lack of external dependencies, making it work

seamlessly across different operating systems.

Example: reading excel file using read_excel() function of readxl package

> # Loading the required library “readxl”
> library(readxl)
>
> input <- read_excel("input.xlsx", sheet = “sheet1”)
> View(input) # this command optional, view the table in ed
iting window (upper left part of R Studio)
> input
A tibble: 8 × 5
 id name salary start_date dept
 <dbl> <chr> <dbl> <dttm> <chr>
1 1 Rick 623. 2002-01-01 00:00:00 012 IT
2 2 Dan 515. 2013-09-23 00:00:00 Operations
3 3 Michelle 611 2014-11-15 00:00:00 IT
4 4 Ryan 729 2014-05-11 00:00:00 HR
5 5 Gary 43.2 2015-03-27 00:00:00 Finance
6 6 Nina 578 2013-05-21 00:00:00 IT
7 7 Simon 633. 2013-07-30 00:00:00 Operations
8 8 Guru 722. 2014-06-17 00:00:00 Finance
>
> # exploring specific field “name” of read table
> name <- input$name
> name
[1] "Rick" "Dan" "Michelle" "Ryan" "Gary"
[6] "Nina" "Simon" "Guru"
> salary <- input$salary
> salary
[1] 623.30 515.20 611.00 729.00 43.25 578.00 632.80 722.50
>
> # If we want to get the sum of salaries
> Sum <- sum(input$salary)
> Sum
[1] 4455.05
> # We can convert the loaded data to a data frame
> df <-data.frame(input)
> df
 id name salary start_date dept
1 1 Rick 623.30 2002-01-01 012 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 43.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations
8 8 Guru 722.50 2014-06-17 Finance
>

10

R programming Dr. Labeed Al-Saad

> #exploring selective fields
> df$name
[1] "Rick" "Dan" "Michelle" "Ryan" "Gary"
[6] "Nina" "Simon" "Guru"
>
> # Summarize data
> summary(df)
 id name salary
 Min. :1.00 Length:8 Min. : 43.25
 1st Qu.:2.75 Class :character 1st Qu.:562.30
 Median :4.50 Mode :character Median :617.15
 Mean :4.50 Mean :556.88
 3rd Qu.:6.25 3rd Qu.:655.23
 Max. :8.00 Max. :729.00
 start_date dept
 Min. :2002-01-01 00:00:00 Length:8
 1st Qu.:2013-07-12 12:00:00 Class :character
 Median :2014-01-16 00:00:00 Mode :character
 Mean :2012-09-13 06:00:00
 3rd Qu.:2014-07-24 18:00:00
 Max. :2015-03-27 00:00:00

We can also, import excel file

Writing Excel Files:

 writexl: This package complements readxl and excels (pun intended)

at writing R data frames to new .xlsx Excel files. It offers a

straightforward approach without requiring additional dependencies.

Example: using write_exlsx() function of “writexl” package to generate

excel file in working directory (if not you have to specify the path)

> # Load the “writexl” package
> library(writexl)
>
> # Create a sample data frame
> df <- data.frame(
+ Name = c("Alice", "Bob", "Charlie"),
+ Age = c(25, 30, 35),
+ Salary = c(50000, 60000, 70000)
+)
>
> # Write the data frame to an Excel file
> write_xlsx(df, path = "example.xlsx")

